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ABSTRACT
Remotely sensed crop reflectance data can be used to simulate

crop growth using within-season calibration. A model based on
GRAMI, previouslymodified to simulate cotton (Gossypium hirsutum
L.) growth, was revised and tested to simulate leaf area development
and to estimate lint yield of water-stressed cotton. To verify the model,
cotton field data, such as leaf area index (LAI), lint yield, and remotely
sensed vegetation indices (VI), were obtained from an experimental
field treated with various irrigation levels at the Plant Stress andWater
Conservation Laboratory at Lubbock, Texas from 2002 to 2004. The
model was validated using field data obtained separately from veri-
fication data at the same location in 2005. A hand-held multispectral
radiometer with 16 spectral bands was used to measure reflectance.
Five VI designs of interest were evaluated and used as input values for
within-season calibration of the model. Simulated VI and LAI were in
agreement with the measured VI and LAI, with r 2 values from 0.96 to
0.97 and RMSE values from 0.02 to 0.24 in validation. Simulated lint
yields were in agreement with measured lint yields, with r 2 values from
0.63 to 0.67 and RMSE values from 28.3 to 100.0. The model was not
very sensitive to the higher irrigation treatments in reproducing lint
yield. We believe that validation with more data sets can deal with this
matter. The VI worked equally well in reproducing measured cotton
growth when they were used for within-season calibration. The results
of this calibration scheme suggest that remote sensing data could be used
to adjust modeled cotton growth for various water-stressed conditions.

IN the course of the development and use of crop
growth models, there have been many attempts to im-

prove their accuracy and usability. To improve the gen-
eral ability of crop models to simulate crop growth, some
modelers have attempted to make model parameters ad-
justable so that simulation can agree with observation. In
one of the earliest attempts, Arkin et al. (1977) proposed
the concept of a hybrid “spectral-physiological” model
able to use Landsat data. This concept was described in
the model SORGF (Maas and Arkin, 1978). Some of the
efforts that followed were the models of SOYGRO
(Wilkerson et al., 1985) and SORKAM (Rosenthal et al.,
1989). Users of SOYGRO can adjust a parameter af-
fecting photosynthesis rate to improve agreement be-
tween simulated and measured biomasses. In SORKAM,
a parameter affecting leaf expansion rate can be adjusted
to make agreement between simulated and measured
leaf area index (LAI). More recently, Barns et al. (1997)
modified CERES-Wheat (Ritchie and Otter, 1985) to

allow the model to accept observed LAI and to adjust
related parameters in the model as a function of LAI.
Although these procedures objectively calibrate model
response to actual field conditions for each application
of the model, they require the acquisition of the same
input requirements that CERES-Wheat requires. Re-
cently, Baez-Gonzalez et al. (2002) reported a method
using satellite and field data with crop growth model-
ing to monitor and estimate corn yield. They showed
that a crop model integrated with satellite imagery and
field data can be used to monitor crop growth and to
assess grain yield on a large scale.

Within-season calibration is one of the procedures
used to improve the accuracy of model estimates using
relatively simple input requirements (Maas, 1993b). In
this calibration method (see Fig. 2), actual measure-
ments of crop leaf area development are obtained at
specified stages of the growing season. Certain param-
eters and initial conditions of the model are then itera-
tively adjusted until the resulting simulated crop growth
achieves a best fit to the actual state of the crop at
those stages of growth. This methodology was originally
implemented in GRAMI, a model for estimating the
growth and yield of grain crops (Maas, 1992 and 1993b).
The methodology was used to estimate evaporation
and biomass production (Moran et al., 1995; Maas and
Doraiswamy, 1996). Recently, Ko et al. (2005) showed
that this calibration method could be extended to sim-
ulate the growth and lint yield of cotton by incorporating
factors to calculate the appearance and growth of bolls.
The procedure was demonstrated using cotton data from
irrigated fields in the Texas High Plains. It was uncertain
whether the model could accurately simulate the growth
and yield of cotton experiencing water stress.

The measurements of actual crop growth used in
within-season calibration can come fromvarious sources.
For example, ground-based field measurements of LAI
orgroundcover couldbeobtainedat various timesduring
the growing season for use in calibrating themodel.How-
ever, obtaining ground-based measurements of these
variables is often time consuming and labor intensive.
Remote sensing, from ground-based spectroradiome-
ters, airborne sensors, or satellites, can efficiently acquire
data on crop canopy growth for numerous fields within
an agricultural region. In some situations, the use of re-
motely sensed crop canopy data to calibrate a model can
produce simulations of crop growth that are more ac-
curate than those obtained using ground-based observa-
tions (Maas, 1993c).
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The objectives of this study were (i) to demonstrate
the ability of a model that uses within-season calibration
to accurately simulate the growth and lint yield of cotton
under a variety of water-stressed conditions and (ii) to
compare different vegetation indices for their ability to
calibrate the model to the measured field results. The
vegetation indices have been suggested by other studies
as being useful in evaluating cotton growth (Yang et al.,
2001; Boydell and McBratney, 2002; Zarco-Tejada et al.,
2005). The comparison was made to determine if some
of the vegetation indices are more effective than others
for within-season calibration of the model in simulating
the growth and lint yield of cotton. The crop model sim-
ulations in this study were made using data collected
independently of those used in developing the model.

MATERIALS AND METHODS

Verification Data

Cotton Field Data

The field study to verify the model was conducted at the
USDA-ARS Plant Stress and Water Conservation Labora-
tory (338359380 N, 1018549040 W; altitude 990 m) at Lubbock,
TX, from 2002 to 2004. Cotton (Paymaster 2326 BG/RR)
was planted on 13 May in 2002 and 2003 and on 14 May in
2004. Study plots (165 by 10 m) were planted in north–south
rows spaced 1.0 m apart. The soil was an Amarillo fine sandy
loam, 1 to 3% slope (soil survey of Lubbock County, TX,
issued in 1979, USDA Soil Conserv. Serv.). Irrigation treat-
ments were established using a BIOTIC system (Upchurch
et al., 1996). In this approach, different irrigation levels are
established by assigning different amounts of time from the
onset of stress before irrigation is applied. The time delays
used in this study were 2.5, 5.5, and 7.5 h in 2002 and 5.5, 6.5,
7.5, and 8.5 h in 2003 and 2004. Cotton yield of the 2.5-h
treatment was not different from the 5.5-h treatment in 2002,
even though more water was applied. Therefore, although
three irrigation levels were established in 2002, four levels
from 5.5 to 8.5 h were used in 2003 and 2004 to provide a range
of water application within the deficit irrigation region. Ir-
rigation was applied with a subsurface drip irrigation system
with laterals installed 0.3 m below the surface of each bed
(Wanjura et al., 2004).

A randomized, complete-block design was used with four
replications of each irrigation level. Plants were sampled on
day of year (DOY) 171, 191, 210, 226, and 254 in 2002; DOY
174, 190, 224, and 266 in 2003; and DOY 173, 194, 229, and 264
in 2004. Ten plants in each plot were randomly selected, cut,
and transported to a laboratory where several plant growth
parameters, including leaf area, were measured. Leaf area was
measured using a LI-3100 area meter (LI-COR, Lincoln, NE).
Leaf area index (LAI) was calculated as leaf area per plant
divided by ground area per plant. At the end of the growing
season, lint yield was determined by hand-harvesting ran-

domly selected areas (or by harvesting rows using a cotton
stripper) for the plots of each treatment.

Weather data for the field site from 2002 to 2004 were ob-
tained from the PSWC Weather Station (http://www.lbk.ars.
usda.gov/wewc/weather.htm) at Lubbock, TX. That station is
approximately 200 m away from the site. During the growing
season (roughly 13 May to 15 October), average photosyn-
thetically active radiation (PAR) was 10.0 MJ m22 d21, and
rainfall was 191 mm in 2002; PAR was 9.4 MJ m22 d21,
and rainfall was 167 mm in 2003; and PAR was 9.2 MJ m22 d21,
and rainfall was 308 mm in 2004.

Remote Sensing Data

A hand-held multispectral radiometer (CROPSCAN, Roch-
ester, MN) was used to measure the reflectance of each plot. It
accommodates up to 16 bands to measure incident and reflected
radiations. The centerwavebands (CWB) andbandwidths (BW)
for the 13 filters used in this study were CWB 460 nm with
BW10.0 nm, CWB485 nmwithBW90.0 nm, CWB500 nmwith
BW 40.0 nm, CWB 560 nm with BW 9.4 nm, CWB 600 nm
with BW 10.1 nm, CWB 660 nm with BW 10.0 nm, CWB
700 nm with BW 12.3 nm, CWB 750 nm with BW 40.0 nm,
CWB 800 nm with BW 65.0 nm, CWB 830 nm with BW
40.0 nm, CWB 880 nm with BW 12.4 nm, CWB 940 with BW
13.2 nm, and CWB 1100 nmwith BW16.5 nm. For calibration, a
white standard card with known spectral reflectance with which
to compare down sensor readings was used as a measurement
reflectance. The measurement condition of the radiometer was
a 15-degree field of view for reflected irradiation sensors and
vertically 2 m in height above target areas. Reflectance was
measured on DOY 206, 218, 220, 226, 240, 247, and 256 in 2002;
DOY 136, 149, 174, 191, 195, 205, 219, 225, 233, 240, 254, and
269 in 2003; and DOY 135, 167, 183, 189, 196, 203, 216, 223, 236,
246, 253, and 267 in 2004. In each plot, reflectance wasmeasured
with five replications in three different locations. Measurements
were made between 1100 h and 1300 h CDT on clear days but
were delayed on some days with partial cloudiness to achieve
measurement during clear-sky conditions.

Reflectance measurements were used to calculate the values
of the five VI designs as described in Table 1. To calculate the
perpendicular vegetation index (PVI), an equation for the bare
soil line was obtained using measurements of near-infrared
(NIR) and red reflectance made on bare soil at the field site
(RichardsonandWiegand, 1977).The slope (1.24)and intercept
(0.02) values presented in Fig. 1 were used as the coefficients a
and b in the PVI equation (Table 1).

Validation Data

The field data set used to validate the model was collected
from an experimental field at the USDA-ARS Plant Stress and
Water Conservation Laboratory at Lubbock, TX, in 2005. This
data set was separately obtained from the field data used for
verification. The soil was an Amarillo fine sandy loam, 1 to 3%
slope. Cotton variety Paymaster 2326 BG/RR was planted on
7 June. Study plots (165 by 10 m) were planted in north–south

Table 1. Vegetation indices used for leaf area index estimation.

Vegetation index Equation† Reference

Normalized difference vegetation index (R800 2 R660)/(R800 1 R660) Rouse et al. (1974)
Modified triangular vegetation index 1.2(1.2[R800 2 R560] 2 2.5[R660 2 R560]) Haboudane et al. (2004)
Re-normalized difference vegetation index (R800 2 R660)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R800 þR660
p

Rougean and Breon (1995)
Optimized soil-adjusted vegetation index (1 1 0.16)(R800 2 R660)/(R800 1 R560 1 0.16) Rondeaux et al. (1996)
Perpendicular vegetation index (R800 2 a 3 R660 2 b)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

Richardson and Wiegand (1977)

†R800, R660, and R560 represent the reflectance values of each waveband of 800, 660, and 560. The values of a and b in the perpendicular vegetation index
equation are the slope and intercept from the linear equation of the bare soil line.
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rows spaced 1.0 m apart. Irrigation was applied with a subsur-
face drip irrigation system with laterals installed 0.3 m below
the surface of each bed. The irrigation treatments were 2, 4, 6,
and 8 mm d21. The amounts of the accumulated irrigation and
rainfall during the season were 358, 460, 562, and 664 mm,
respectively. A randomized, complete-block design was used
with four replications of each irrigation treatment. Plants were
sampled on DOY 187, 206, 234, and 269 to measure leaf area
and growth parameters. The hand-held CROPSCAN radiom-
eter used for model verification was used to collect remotely
sensed data. Reflectance of plant canopy was measured on
DOY 164, 171, 179, 187, 192, 206, 214, 220, 229, 235, 242, 258,
and 264. Lint yield was determined using hand harvesting.
During the growing season (7 June–15 October), PAR was
9.5 MJ m22 d21, and rainfall was 158.7 mm.

Model Revision and Simulation

A cotton crop model that uses remote sensing data (Ko
et al., 2005) was used in this study. During each day of a sim-
ulated growing season, the model goes through five processes
to simulate cotton growth (Fig. 2). These include (i) calculation
of growing degree days (GDD), (ii) absorption of incident
solar radiation by the crop canopy, (iii) production of new dry
mass by the crop canopy and determination of boll production,
(iv) determination of LAI partitioning of new dry mass, and
(v) the conversion of model-generated LAI values to corre-
sponding VI values using empirically derived functions. At
the end of the simulated growing season, the model uses the
within-season calibration procedures (Fig. 2) originally used in
GRAMI, in which simulated crop growth (LAI or VI) is com-
pared with the measured crop growth. If the simulated growth
is sufficiently different from the measured growth, model pa-
rameter values are adjusted, and the crop simulation is repeated
from the planting date. This process of model integration and
comparison is repeated until the difference between simulated
and measured growth is minimized. A simulated growth curve
going through measured LAI values with a minimal error is
shown in Fig. 3. As a result, this iterative method results in
improved agreement between the simulation and the measure-
ments. There are four parameters (L0, a, b, c) that control crop
growth in themodel. The initial values of L0, a, b, and cwere 23

1027, 3.253 1021, and 1.253 1023. The initial value (L0) of LAI
at crop emergence is determined in the first step, followed by
the parameters of a, b, and c in order in the model calibration.
Details of these procedures were described by Maas (1993b).

Simulated 
growth (SG) 

Measured 
growth (MG)

SG ≈ MG 

Start of simulation

Change parameter 
values 

Accumulate GDD 

Determine PAR

Compute daily increase in 
AGDM and boll number 

Calculate daily change in LAI 
appearance and/or senescence 

Simulated 
growth and yield

N 

Y 

End of season
in simulation

N 

Y 

Next day 

Initialize state variables

Vegetation index 
derived from LAI 

Fig. 2. Diagrammatic representation of the model that shows daily
cotton growth processes and the within-season calibration (modified
from Maas, 1993a and 1993b). Measured and simulated growths
refer to measured and simulated leaf area index or vegetation indices.
AGDM, above-ground dry mass; GDD, growing degree days; LAI,
leaf area index; PAR, photosynthetically active radiation.
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Fig. 1. The soil line determined from the linear relationship between
near-infrared (NIR) and red reflectance of bare soils of 2002, 2003,
and 2004 data (n 5 432).
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Fig. 3. An example of simulated leaf area index (LAI) passing through
measured LAI values. The dotted lines (E1 to E4) represent the
errors between simulated and measured values of LAI.
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Because theprevious cottonmodelwasdevelopedand tested
under irrigated conditions, the model was revised to make it
more applicable for water-stressed conditions. Lint yield es-
timation in themodel is directly evaluated fromboll production.
The daily increase in boll number (DB) depends on GDD and
LAI and is calculated using the following equation:

DB 5 gDD[(DL/DD)/l] [1]

where g is a coefficient of boll production, DD is daily change
in GDD, DL is daily increase in LAI, and l is a coefficient
related to LAI that affects daily boll production. The g
(0.57 GDd21) and l (0.0058 GDd21) values were previously
determined using field data under irrigated conditions (Ko
et al., 2005). When a plant experiences a stress such as soil
moisture deficit, a primary plant response is to reduce its size
to reduce transpiration andmaintenance respiration.Thewithin-
season calibration procedure objectively establishes parameter
values that result in a match between modeled and measured
conditions. As a result, it allows the effects of factors influenc-
ing crop growth (e.g., water stress) to be implicitly incorporated
into the simulation. Because boll number is a function of plant
growth (Ko et al., 2005), the model assumes boll production is
also reduced by stress factors. Because the g value was deter-
mined from plants under well irrigated conditions, it needs to
be adjusted for plants experiencing water stress. In the revised
model, g is reduced by 30% if the DL/DD value is less than l,
which is an indicator of water stress. This generally corresponds
to the report by Kerby and Hake (1993), who reported that the
low irrigation treatment (609.6 mm seasonal total) produced
74% as many fruiting positions as the moderate irrigation
treatment (762 mm).

Themodel design includes provisions for includingmeasured
VI or LAI values as input for within-season calibration. To ac-
complish this, conversion functions (Table 2)were incorporated
in this version of the model. The conversion functions for each
VI design were derived from the 3 yr of field data. When
measured VI values were plotted against the corresponding
measured values of LAI, each data set could be adequately fit
with a power function, showing that modeled VI values can be
estimated as a power function of model-generated LAI. How-
ever, these equations might vary in other environments or re-
gions because some results agree and others disagree with
results from other studies (Lillesaeter, 1982; Sellers et al., 1986;
Baret and Guyot, 1991; Richardson et al., 1992; Haboudane
et al., 2004). It is assumed that saturation of VI values cor-
responding to higher LAI values varies among different study
sites and different varieties. Additional studies are required
to determine the degree to which these equations can be gen-
erally applied.

Model runs were independently conducted with VI inputs
calculated from the index designs inTable 1 to test each design’s
suitability for within-season calibration. Simulated VI values
were derived from the corresponding LAI to VI conversion

function, and simulatedLAI and lint yieldswere comparedwith
the measured values of VI, LAI, and lint yields for each year
and each irrigation treatment. Standard errors were calculated
using the statistical and mathematical functions of Microsoft
EXCEL. Other statistical analyses, such as RMSE, were
calculated using SAS software (SAS version 8.1, SAS Institute,
Cary, NC).

RESULTS AND DISCUSSION
Remote Sensing

Reflectance in each waveband during the cotton grow-
ing season in 2003 and 2004 showed similar seasonal
variation (Fig. 4). A comparable range of variation could
not be determined in 2002 because reflectance measure-
ments were available only after DOY 206. Reflectance in
NIRregionwashighest onDOY218 in 2002andDOY205
in 2003 and DOY 216 in 2004. There were large increases
in reflectance in the NIR region after DOY 174 in 2003
and DOY 167 in 2004. It seems that seasonal variation of

Table 2. Relationships between leaf area index (LAI) and the
vegetation indices (VIs) using the 2002, 2003, and 2004 data
(n 5 41).

Relation between LAI and VIs† r 2

NDVI 5 0.47 LAI0.42 0.86 (P , 0.0001)
RDVI 5 0.34 LAI0.47 0.86 (p , 0.0001)
OSAVI 5 0.41 LAI0.45 0.86 (p , 0.0001)
MTVI 5 0.31 LAI0.68 0.79 (p , 0.0001)
PVI 5 0.10 LAI0.79 0.83 (p , 0.0001)

†The VIs are normalized difference vegetation index (NDVI), re-
normalized difference vegetation index (RDVI), modified triangular veg-
etation index (MTVI), optimized soil-adjusted vegetation index (OSAVI),
and perpendicular vegetation index (PVI).
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Fig. 4. Changesof average reflectancevalues for eachwavebandduring
crop growing season in 2002, 2003, and 2004. Measurements were
made after day of year (DOY) 206 in 2002, and not all measurement
dates are shown in 3 yr. Cotton was planted onDOY 133 in 2002 and
2003 and on DOY 134 in 2004.
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cotton crop canopy couldbequalitativelymonitored using
that of NIR reflectance. These results generally corre-
spond to the seasonal variation of hyperspectral reflec-
tance by Zarco-Tejada et al. (2005).
Differences of canopy reflectance among different

treatments were also analyzed using the reflectance data
on average of the seasonal measurements and at ap-
proximately maximum LAI (between DOY 210 and 220
in 2002, 2003, and 2004). Because themeasurement dates
were variable for the 3 yr, the data at approximately
maximum LAI was used to see year-to-year variation as
well. When reflectance was compared among the dif-
ferent irrigation treatments for each year, differences of
canopy reflectance were noticeable in the wavebands
from 750 to 940 nm (Fig. 5). Therefore, canopy variation
due to different irrigation treatments could be qualita-
tively determined using the variation in NIR reflectance.
Previously, Moran et al. (1989) reported that water-
stressed canopies in alfalfa (Medicago sativa L.) have a
lower spectral reflectance in the NIR and red wavebands

when compared with unstressed canopies. Our results
correspond to their results in the response to the re-
flectance of the NIR waveband. On the other hand, the
variation ofNIR reflectancewas highest in 2004. It seems
that the highest variation was influenced by the compar-
atively low reflectance of bare soil data in 2004 presented
in Fig. 1. The difference in crop canopy among the 3 yr
could not be determined using the difference in NIR
reflectance. It is assumed that this was affected by the
difference in bare soil reflectance among the 3 yr, which
influences canopy reflectance.

Crop Modeling
Verification

The performance of the model iterative procedure
was evaluated by comparing simulated values of the VI
and LAI with the measured values of the VI and LAI
for each irrigation treatment in 2002, 2003, and 2004
(Fig. 6). For all simulations involving the VI, simulated
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Fig. 5. Changes of reflectance for each waveband at the seasonal average (left) of measured data and at close to maximum leaf area index (right) as a
function of different irrigation levels in 2002, 2003, and 2004. Vertical bars represent standard errors on the data points (for each treatment, n5 49
in 2002, n 5 36 in 2003 and in 2004). Cotton was planted on day of year (DOY) 133 in 2002 and 2003 and on DOY 134 in 2004. LAI, leaf
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VI values were in agreement with the measured VI val-
ues equally well, whereas RMSE was smallest in simu-
lation using PVI. Details for r 2 and RMSE values in the
3 yrwere as follows: r 2 values forNDVIwere 0.36 in 2002,
0.90 in 2003, and 0.89 in 2004, and RMSE values were
0.042 in 2002, 0.085 in 2003, and 0.077 in 2004; r 2 values
forRDVIwere 0.54 in 2002, 0.90 in 2003, and 0.90 in 2004,
and RMSE values were 0.040 in 2002, 0.069 in 2003, and
0.060 in 2004; r 2 values for the optimized soil-adjusted
vegetation index (OSAVI) were 0.48 in 2002, 0.90 in
2003, and 0.90 in 2004, and RMSE values were 0.041 in
2002, 0.080 in 2003, and 0.069 in 2004; r 2 values for
modified triangular vegetation index (MTVI) were 0.71
in 2002, 0.89 in 2003, and 0.89 in 2004, and RMSE values
were 0.058 in 2002, 0.091 in 2003, and 0.081 in 2004; r 2

values for PVI were 0.55 in 2002, 0.89 in 2003, and 0.91 in
2004, andRMSEvalueswere 0.028 in 2002, 0.037 in 2003,

and 0.030 in 2004; r 2 values for LAI were 0.91 in 2002,
0.72 in 2003, and 0.94 in 2004, and RMSE values were
0.43 in 2002, 0.69 in 2003, and 0.36 in 2004. Overall,
simulated VI and LAI agreed with the measured VI and
LAI in the 3 yr. The r 2 values in 2002 were smaller than
the other years. It is believed that this was caused by data
points concentrated on a range of values because the ref-
lectance data in 2002 was available after DOY 206.
Simulated VI shown here were obtained from the func-
tions shown in Table 2, whichwere derived from themea-
sured VI. Therefore, it is not surprising that there is good
agreement between the measured and simulated values.
Using this procedure, we demonstrate that the model
incorporated with the functions can successfully repro-
duce the field condition of cotton leaf developments.

Simulated lint yields determined using the VI and
LAI showed agreement with the measured lint yields,
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Fig. 6. Simulated vs. measured VI and LAI for different irrigation levels in 2002, 2003, and 2004. The solid diagonal line represents the ratio 1:1. The
VI are normalized difference vegetation index (NDVI), re-normalized difference vegetation index (RDVI), modified triangular vegetation index
(MTVI), optimized soil-adjusted vegetation index (OSAVI), and perpendicular vegetation index (PVI).
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with r 2 of 0.57 and RMSE of 124.7 kg ha21 for NDVI,
r 2 of 0.62 and RMSE of 122.7 kg ha21 for RDVI, r 2 of
0.60 and RMSE of 118.9 kg ha21 for OSAVI, r 2 of 0.62
and RMSE of 122.0 kg ha21 for MTVI, r 2 of 0.67 and
RMSE of 99.3 kg ha21 for PVI, and r 2 of 0.71 and
RMSE of 100.1 kg ha21 for LAI (Fig. 7). Most yield es-
timates were within 1 SE of the corresponding measured
values for the 3 yr. The simulated lint yields of each
treatment were in reasonable agreement with the mea-
sured lint yields. This suggests that the model could
reproduce variations in lint yield, resulting from soil
moisture deficit. Although RMSE (99.3) was the least in
the simulation involving PVI, variations in r 2 and RMSE
values among the simulations involving the other VI and
LAI were small. Therefore, our results suggest that all
VI used in the study seem to work equally well in cali-
brating the model.
Use of the within-season calibration procedure allows

the factors influencing crop growth to be incorporated

into the simulation. These factors can be genetic and en-
vironmental; examples include plant population, fertil-
ization, and water stress. These are not only difficult to
adequately incorporate into crop models but also in-
crease the input requirements of them. Maas (1993a and
1993b) reported that a crop model capable of within-
season calibration can adequately simulate crop growth
and yield under various conditions. In this study, we
demonstrate the possible extension of the within-season
calibration procedure to assess lint yields under soil
moisture deficit.

Validation

The accuracy of the model was tested using the in-
dependent data set obtained at Lubbock in 2005. Sim-
ulated VI and LAI were in agreement with measured VI
and LAI for different irrigation treatments during the
crop growing season (Fig. 8); r 2 and RMSE values were
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0.97 and 0.042 for NDVI, 0.96 and 0.042 for RDVI, 0.96
and 0.044 for OSAVI, 0.97 and 0.050 for MTVI, 0.97 and
0.020 for PVI, and 0.96 and 0.24 for LAI. Simulated lint
yields estimated using VI and LAI were in general
agreement with the measured lint yields with r 2 of
0.63 and RMSE of 32.1 kg ha21 for NDVI, R2 of 0.66
and RMSE of 36.4 kg ha21 for RDVI, r 2 of 0.67 and
RMSE of 31.6 kg ha21 for OSAVI, r 2 of 0.67 and RMSE
of 40.9 kg ha21 for MTVI, r 2 of 0.65 and RMSE of
28.3 kg ha21 for PVI, and r 2 of 0.64 and 100.0 kg ha21

for LAI (Fig. 9).
The results show that simulated lint yields involving the

VI were somewhat underestimated in comparison with
the measured lint yields after 1600 kg ha21. Polycarpic
perennials generally reduce their partitioning to sexual
reproduction under low availability of resources, such
aswater stress (Chiarello andGulmon, 1991). Ourmodel

was designed to reduce the reproductive organs of cotton
under soil moisture deficit conditions. However, the
model was not very sensitive to the different irrigation
treatments at the higher lint yields. It is assumed that
canopydevelopmentwasnotdifferent enoughamong the
higher irrigation treatments to represent yield differ-
ences, whereas the model is sensitive to canopy develop-
ment in estimating lint yield. Sanders et al. (1997), by
contrast, reported that reproductive allocation of cotton
was relatively stable in response to environmental fac-
tors. Other studies with cotton demonstrated that there
is a reasonably stable relationship between final harvest
index and environmental factors, including water avail-
ability (Constable and Hearn, 1981; Orgaz et al., 1992;
Kimball and Mauney, 1993). There was statistically no
significant difference among the measured lint yields
from the irrigation treatments at 4, 6, and 8 mm (Fig. 9);
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Fig. 8. Simulated vs. measured VI and LAI for different irrigation depths in 2005. The VI are normalized difference vegetation index (NDVI), re-
normalized difference vegetation index (RDVI), modified triangular vegetation index (MTVI), optimized soil-adjusted vegetation index
(OSAVI), and perpendicular vegetation index (PVI).
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and SE values of the data points of 4 and 6 mm, respec-
tively, lay at and close to the 1:1 ratio line. We believe
that validation with more data sets is needed to deal with
this matter. In addition, the previous studies (Ko, 2004;
Maas andDoraiswamy, 1996;Moran et al., 1995) showed
that simulation could agree more closely with measure-
ment if data for within-season calibration occur at times
critical to plant growth and development.

CONCLUSIONS
The revised model, previously modified from

GRAMI to simulate cotton growth, demonstrated that
the model can reproduce crop growth and lint yield
under soil moisture deficit. Different VI values of in-
terest, determined using a hand-held multispectral
radiometer, were successfully used to calibrate the
model using remote sensing data. When the VI and

LAI were used as input values for within-season cali-
bration, the model was able to simulate the effects of
water stress on the cotton crop growth and lint yield.
However, the validation result shows that the model
was not very sensitive to the higher irrigation treat-
ments in reproducing lint yield. Validation with more
data sets is assumed to deal with this matter. The re-
sults showed that the five VI designs considered in this
study worked equally well when used for within-season
calibration. Thus, when supplied with remote sensing
data, the model seems to be capable of simulating cot-
ton growth and yield under a variety of environ-
mental conditions.

REFERENCES
Arkin, G.F., C.L. Wiegand, and H. Huddleston. 1977. The future role

of a crop model in large area yield estimation. p. 87–116. In Pro-

NDVI

y = 0.30x + 1167.81

r2 = 0.63 (p=0.002)

RMSE = 32.1

1000

1200

1400

1600

1800

2000

RDVI

y = 0.36x + 1082.49

r2 = 0.66 (p=0.001)

RMSE = 36.4

1000

1200

1400

1600

1800

2000

OSAVI

y = 0.32x + 1139.84

r2 = 0.67 (p=0.001)

RMSE = 31.6
1000

1200

1400

1600

1800

2000

MTVI

y = 0.41x + 1002.67

r2 = 0.67 (p=0.001)

RMSE = 40.9
1000

1200

1400

1600

1800

2000

Si
m

ul
at

ed
 li

nt
 y

ie
ld

 (
kg

 h
a-1

) 

PVI

y = 0.27x + 1245.50

r2 = 0.65 (p=0.002)

RMSE = 28.3
1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

LAI

y = 0.94x + 48.63

r2 = 0.64 (p=0.002)

RMSE = 100.0

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

Measured lint yield (kg ha-1) Measured lint yield (kg ha-1) 

2 mm

4 mm

6 mm

8 mm

Fig. 9. Simulated vs. measured lint yields for four irrigation treatments using five different vegetation indices (VI) and leaf area index (LAI) in 2005.
The solid diagonal line represents the ratio 1:1. The VI are normalized difference vegetation index (NDVI), re-normalized difference vegetation
index (RDVI), modified triangular vegetation index (MTVI), optimized soil-adjusted vegetation index (OSAVI), and perpendicular vegetation
index (PVI).

R
e
p
ro
d
u
c
e
d
fr
o
m

A
g
ro
n
o
m
y
J
o
u
rn
a
l.
P
u
b
lis
h
e
d
b
y
A
m
e
ri
c
a
n
S
o
c
ie
ty

o
f
A
g
ro
n
o
m
y
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

1608 AGRONOMY JOURNAL, VOL. 98, NOVEMBER–DECEMBER 2006



ceedings of the Crop Modeling Workshop. USDA-NOAA-EDIS-
CEAS, Columbia, MO.

Baez-Gonzalez, A.D., P. Chen, M. Tiscareno-Lopez, and R. Srinivasan.
2002. Using satellite and field data with crop growth modeling to
monitor and estimate corn yield in Mexico. Crop Sci. 42:1943–1949.

Barns, M.B., P.J. Pinter, Jr., B.A. Kimball, G.W. Wall, R.L. LaMorte,
D.J. Husaker, F. Adamsen, S. Leavitt, T. Thompson, and J. Mathius.
1997. Modification of CERES-Wheat to accept leaf area index as
an input variable. The 1997 ASAE Annual International Meeting
Sponsored by ASAE, Minneapolis, MN. 10–14 Aug. 1997. ASABE,
St. Joseph, MI.

Baret, F., and G. Guyot. 1991. Potentials and limits of vegetation in-
dices for LAI and APAR assessment. Remote Sens. Environ. 35:
161–173.

Boydell, B., and A.B. McBratney. 2002. Identifying potential within-
field management zones from cotton-yield estimates. Precis. Agric.
3:9–23.

Chiarello, N.R., and S.L. Gulmon. 1991. Stress effects on plant re-
production. p. 161–168. In H.A. Mooney et al. (ed.) Response of
plants to multiple stresses. Academic Press, New York.

Constable, G.C., and A.B. Hearn. 1981. Irrigation of crops in a sub-
humid environment: VI. Effect of irrigation and nitrogen fertilizer
on growth, yield, and quality of cotton. Irrig. Sci. 3:17–28.

Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.
Strachan. 2004. Hyperspectral vegetation indices and novel algo-
rithms for predicting green LAI of crop canopies: Modeling and
validation in the context of precision agriculture. Remote Sens.
Environ. 90:337–352.

Kerby, T., and K. Hake. 1993. Monitoring cotton’s growth. ANR pub-
lications. Univ. of California, Oakland.

Kimball, B.A., and J.R. Mauney. 1993. Response of cotton to vary-
ing CO2, irrigation, and nitrogen: Yield and growth. Agron. J.
85:700–706.

Ko, J. 2004. Development of a cotton crop model that uses remote
sensing data. Dissertation, Texas Tech Univ, Lubbock.

Ko, J., S.J. Maas, R.J. Lascano, and D. Wanjura. 2005. Modification of
the GRAMI model for cotton. Agron. J. 97:1374–1379.

Lillesaeter, O. 1982. Spectral reflectance of partly transmitting leaves:
Laboratory measurements and mathematical modeling. Remote
Sens. Environ. 12:247–254.

Maas, S.J. 1992. GRAMI: A crop growth model that can use remotely
sensed information. Publ. ARS-91. USDA, Washington, DC.

Maas, S.J. 1993a. Parameterized model of gramineous crop growth: I.
Leaf area and dry mass simulation. Agron. J. 85:348–353.

Maas, S.J. 1993b. Parameterized model of gramineous crop growth: II.
Within-season simulation calibration. Agron. J. 85:354–358.

Maas, S.J. 1993c. Within-season calibration of modeled wheat growth
using remote sensing and field sampling. Agron. J. 85:669–672.

Maas, S.J., and G.F. Arkin. 1978. User’s guide to SORGF: A dynamic
grain sorghum growth model with feedback capacity. Research
Center Program and Model Doc. 78-1. Texas Agric. Exp. Stn.,
College Station, TX.

Maas, S.J., and P.C. Doraiswamy. 1996. Integration of satellite data
and model simulation in a GIS for monitoring regional evapora-
tion and biomass production. Proc. of 3rd Int. Conf. on Integrating
GIS and Environmental Modeling, Santa Fe, NM. 21–26 Jan. 2006

[CD-ROM]. The National Center for Geographic Information
and Analysis, Santa Barbara, CA.

Moran, M.S., P.J. Pinter, Jr., B.E. Clothier, and S.G. Allen. 1989. Effect
of water stress on the canopy architecture and spectral indices of
irrigated alfalfa. Remote Sens. Environ. 29:251–261.

Moran, M.S., S.J. Maas, and P.J. Pinter, Jr. 1995. Combining remote
sensing and modeling for estimating surface evaporation and
biomass production. Remote Sens. Rev. 12:335–353.

Orgaz, F., L. Mateos, and E. Fereres. 1992. Season length and cultivar
determine the optimum evapotranspiration deficit in cotton. Agron.
J. 84:700–706.

Richardson, A.J., and C.L. Wiegand. 1977. Distinguishing vegetation
from soil background information. Photogram. Eng. Remote Sens.
43:1541–1552.

Richardson, A.J., C.L. Wiegand, D.F. Wanjura, D. Dusek, and J.L.
Steiner. 1992. Multisite analyses of spectral-biophysical data for
sorghum. Remote Sens. Environ. 41:71–82.

Ritchie, J.T., and S. Otter. 1985. Description and performance of
CERES-Wheat: A user-oriented wheat yield model. p. 159–175. In
ARS Wheat Yield Project. ARS-38. National Technology Infor-
mation Service, Springfield, VA.

Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soil-
adjusted vegetation indices. Remote Sens. Environ. 55:95–107.

Rosenthal, W.D., R.L. Vanderlip, B.S. Jackson, and G.F. Arkin. 1989.
SORKAM: A grain sorghum crop growth model. MP-1969. Texas
Agric. Exp. Stn., College Station, TX.

Rougean, J.-L., and F.M. Breon. 1995. Estimating PAR absorbed by
vegetation from bidirectional reflectance measurements. Remote
Sens. Environ. 51:375–384.

Rouse, J.W., R.H. Haas, J.A. Schell, D.W. Deering, and J.C. Harlan.
1974. Monitoring the vernal advancements and retrogradation of
natural vegetation. NASA/GSFC, Greenbelt, MD.

Sanders, V.O., M.P. Bange, and S.P. Milroy. 1997. Reproductive
allocation of cotton in response to plant environmental factors.
Ann. Bot. (Lond.) 80:75–81.

Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher. 1986. A simple bio-
sphere model (SiB) for use within general circulation models. J.
Atmos. Sci. 43:505–531.

Upchurch, D.R., D.F. Wanjura, J.J. Burke, and J.R. Mahan. 1996. Biol-
ogically identified optimal temperature interactive console (BI-
OTIC) for managing irrigation. United States Patent No. 5539,637.
23 July, 1996.

Wanjura, D.F., D.R. Upchurch, and S. Maas. 2004. Spectral reflectance
estimates of cotton biomass and yield. Proc. Beltwide Cotton Conf.,
San Antonio, TX. 7–9 Jan. 2004. National Cotton Council of Amer-
ica, Memphis, TN.

Wilkerson, G.G., J.W. Jones, K.J. Boot, and J.W. Mishoe. 1985.
SOYGRO V5.0: Soybean crop growth and yield model. Technical
Documentation, Univ. of Florida, Gainesville.

Yang, C., J.M. Bradford, and C.L. Wiegand. 2001. Airborne multi-
spectral imagery formapping variable growing conditions and yields
of cotton, grain sorghum, and corn. Trans. ASAE 44:1983–1994.

Zarco-Tejada, P.J., S.L. Ustin, and M.L. Whiting. 2005. Temporal and
spatial relationships between within-field yield variability in cotton
and high-spatial hyperspectral remote sensing imagery. Agron. J.
97:641–653.

R
e
p
ro
d
u
c
e
d
fr
o
m

A
g
ro
n
o
m
y
J
o
u
rn
a
l.
P
u
b
lis
h
e
d
b
y
A
m
e
ri
c
a
n
S
o
c
ie
ty

o
f
A
g
ro
n
o
m
y
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

1609KO ET AL.: MODELING WATER-STRESSED COTTON GROWTH


